The Fast Fourier Transform (FFT) remains a cornerstone of digital signal processing, underpinning applications from telecommunications to medical imaging. Modern FFT processors and architectures have ...
The Fast Fourier Transform (FFT) is an implementation of the Discrete Fourier Transform (DFT) using a divide-and-conquer approach. A DFT can transform any discrete signal, such as an image, to and ...
In January, four MIT researchers showed off a replacement for one of the most important algorithms in computer science. Dina Katabi, Haitham Hassanieh, Piotr Indyk, and Eric Price have created a ...
A talk, The Unreasonable Effectiveness of the Fourier Transform, was presented by [Joshua Wise] at Teardown 2025 in June last year. Click-through for the notes or check out the video below the break ...
Sparse Fourier Transform (SFT) algorithms constitute a transformative approach to spectral analysis by leveraging the inherent sparsity of signals in the frequency domain. In contrast to the ...
Over at Quanta Magazine [Shalma Wegsman] asks What Is the Fourier Transform? [Shalma] begins by telling you a little about Joseph Fourier, the French mathematician with an interest in heat propagation ...
In this paper we describe a method for computing the Discrete Fourier Transform (DFT) of a sequence of $n$ elements over a finite field $\mathrm{GF}(p^m)$ with a ...
The Fast Fourier Transform allows computers to take complex signals and break them into their underlying frequencies. This ...