在深度学习工程实践中,当训练大型模型或处理大规模数据集时,上述错误信息对许多开发者而言已不陌生。这是众所周知的CUDA out of memory错误——当GPU尝试为张量分配空间而内存不足时发生。这种情况尤为令人沮丧,特别是在已投入大量时间优化模型和代码后 ...
【新智元导读】果粉Big Day!PyTorch宣布,原生支持苹果Mac GPU机器学习加速。与单CPU加速相比,训练性能提升6倍,推理任务性能最高提升21倍 对于搞AI和机器学习的苹果用户来说,今天无疑是个好日子。 如果是用PyTorch的苹果用户,可能更是盼了一年半的大日子!
【新智元导读】用英伟达的GPU,但可以不用CUDA?PyTorch官宣,借助OpenAI开发的Triton语言编写内核来加速LLM推理,可以实现和CUDA类似甚至更佳的性能。 试问,有多少机器学习小白曾被深度学习框架和CUDA的兼容问题所困扰? 又有多少开发者曾因为频频闪烁的警报「 ...
【导读】果粉Big Day!PyTorch宣布,原生支持苹果Mac GPU机器学习加速。与单CPU加速相比,训练性能提升6倍,推理任务性能最高提升21倍 对于搞AI和机器学习的苹果用户来说,今天无疑是个好日子。 PyTorch官网宣布,在与Metal工程团队合作后,很高兴地宣布支持Mac上的 ...
点击上方“Deephub Imba”,关注公众号,好文章不错过 ! 随着NVIDIA不断推出基于新架构的GPU产品,机器学习框架需要相应地更新以支持这些硬件。本文记录了在RTX 5070 Ti上运行PyTorch时遇到的CUDA兼容性问题,并详细分析了问题根源及其解决方案,以期为遇到类似情况的 ...
仅需几十行 PyTorch 代码即可大幅提高 GPU 利用率,在英伟达 A100 上的 GPU 利用率高达 70%。这一能力由一款名为 LaCT 的新模型架构实现,它由北京大学本科校友、美国麻省理工学院博士生张天远和所在团队打造。 研究团队通过在不同模态的任务中采用范围从 2000 到 ...
更多精彩内容 请点击上方蓝字关注我们吧! 今年 3 月,苹果发布了其自研 M1 芯片的最终型号 M1 Ultra,它由 1140 亿个晶体管组成,是有史以来个人计算机中最大的数字。苹果宣称只需 1/3 的功耗,M1 Ultra 就可以实现比桌面级 GPU RTX 3090 更高的性能。 随着用户 ...
想要了解自己的 PyTorch 项目在哪些地方分配 GPU 内存以及为什么用完吗?不妨试试这个可视化工具。 近日,PyTorch 核心开发者和 FAIR 研究者 Zachary DeVito 创建了一个新工具(添加实验性 API),通过生成和可视化内存快照(memory snapshot)来可视化 GPU 内存的分配状态。
雷锋网按:本文作者天清,原文载于其知乎专栏世界那么大我想写代码,雷锋网获其授权发布。 把manager.py放到你训练的目录就行。 直接使用with gm.auto_choice()自动选择设备进行接下来代码块的操作。 随着深度学习技术快速的发展,深度学习任务的数据和计算规模 ...
AI自动生成的苹果芯片Metal内核,比官方的还要好? Gimlet Labs的最新研究显示,在苹果设备上,AI不仅能自动生成Metal内核,还较基线内核实现了87%的PyTorch推理速度提升。 更惊人的是,AI生成的Metal内核还在测试的215个PyTorch模块上实现了平均1.87倍的加速,其中一些 ...
PyTorch,这一广受欢迎的开源机器学习框架,近期正式推出了其最新版本——2.8版。此次版本更新聚焦于提升量化大语言模型(LLM)在Intel CPU上的推理性能,吸引了众多开发者和研究人员的目光。 在PyTorch 2.8中,开发者团队通过算法优化和技术革新,显著提高了 ...
当前正在显示可能无法访问的结果。
隐藏无法访问的结果