First invented in 1985 by IBM in Zurich, Atomic Force Microscopy (AFM) is a scanning probe technique for imaging. It involves a nanoscopic tip attached to a microscopic, flexible cantilever, which is ...
What Is Atomic Force Microscopy? Atomic force microscopy (AFM) is a powerful technique that enables surface ultrastructure visualization at molecular resolution. 1 Besides three-dimensional (3D) ...
Atomic force microscopy (AFM) has evolved into an indispensable tool for nanoscale imaging and fabrication, enabling both high-resolution surface characterisation and precise nanomachining. By ...
Atomic Force Microscopy (AFM) has evolved into a central technique in nanotechnology, providing three-dimensional imaging and precise measurements at the atomic scale. Its ability to probe surfaces by ...
Through a novel combination of machine learning and atomic force microscopy, researchers in China have unveiled the molecular surface structure of "premelted" ice, resolving a long-standing mystery ...
Through a novel combination of machine learning and atomic force microscopy, researchers in China have unveiled the molecular surface structure of "premelted" ice, resolving a long-standing mystery ...
New model extracts stiffness and fluidity from AFM data in minutes, enabling fast, accurate mechanical characterization of living cells at single-cell resolution. (Nanowerk Spotlight) Cells are not ...
Invented 30 years ago, the atomic force microscope has been a major driver of nanotechnology, ranging from atomic-scale imaging to its latest applications in manipulating individual molecules, ...
In this interview, Professor Emeritus Mervyn Miles at the University of Bristol speaks about the history and technology behind Atomic Force Microscopy (AFM) and Scanning Probe Microscopy (SPM). Can ...
Scientists at the Department of Energy's Oak Ridge National Laboratory have reimagined the capabilities of atomic force microscopy, or AFM, transforming it from a tool for imaging nanoscale features ...
Researchers at Nano Life Science Institute (WPI-NanoLSI), Kanazawa University report in Small Methods the 3D imaging of a suspended nanostructure. The technique used is an extension of atomic force ...
The developed high-speed three-dimensional scanning force microscopy enabled the measurement of 3D force distribution at solid-liquid interfaces at 1.6 s/3D image. With this technique, 3D hydration ...